If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=96x-39
We move all terms to the left:
40x^2-(96x-39)=0
We get rid of parentheses
40x^2-96x+39=0
a = 40; b = -96; c = +39;
Δ = b2-4ac
Δ = -962-4·40·39
Δ = 2976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2976}=\sqrt{16*186}=\sqrt{16}*\sqrt{186}=4\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-4\sqrt{186}}{2*40}=\frac{96-4\sqrt{186}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+4\sqrt{186}}{2*40}=\frac{96+4\sqrt{186}}{80} $
| 10(2x+10)=9(2x+3+9) | | 12x+10=11x+12 | | 8x-35=x | | (7x-4)+x=180 | | 11a+9=5a+30 | | 2h+2.1=16.5 | | 3y+2.7=26.4 | | t=53 | | -2+5=3t | | Y=17x+ | | 4x+30-2x+36=90 | | 180=5b^2 | | 5^(2x-3)=1 | | 0.4167y+0.167=1.167 | | q/3+1=11 | | 5^2x-3=1 | | y+102=2y | | 1.83=0.11a+1.167 | | 5.2+1.1z-1.5z=-1.2 | | 3x-9+13x=4(6x-4)+5 | | -27=4z-2z-1 | | a/2.6=4.3+2.1 | | 7a+2-9a=-16 | | 6b-9b=12 | | 2.6666666.7c-2=0.666666667c-12 | | 13.4-m=8.1 | | 23=4y-2y-19 | | (13x-6)=(21x+8) | | x/6-5=1/6 | | -2(-8z+9-1+5z)=74 | | 2=2.75s+13 | | 200m-200m+48500=50750-150m |